Характеристика навчального змісту і особливостей його реалізації
Курс математики 5—6 класів передбачає розвиток, збагачення і поглиблення знань учнів про числа і дії над ними, числові й буквені вирази, величини та їх вимірювання, рівняння і нерівності, а також уявлень про окремі геометричні фігури і геометричні тіла. Понятійний апарат, обчислювальні алгоритми, графічні уміння і навички, що мають бути сформовані на цьому ступені вивчення курсу, є тим підґрунтям, що забезпечує успішне вивчення в наступних класах алгебри і геометрії, а також інших навчальних предметів, де застосовуються математичні знання.
Основу курсу складає розвиток поняття числа та формування міцних обчислювальних і графічних навичок. У 5—6 класах відбувається розширення множини натуральних чисел і нуля до множини раціональних чисел шляхом послідовного введення дробів (звичайних і десяткових), а також від’ємних чисел разом з формуванням міцних обчислювальних навичок.
Розвиток інших змістових ліній здійснюється інтегровано з вивченням відповідних чисел і операцій над ними. Навчальний матеріал, що стосується виразів, величин, рівнянь і нерівностей, геометричних фігур, має загалом пропедевтичний характер. Ознайомлення з ним готує учнів до свідомого системного вивчення відповідних тем у курсах алгебри і геометрії. Зокрема, учні мають дістати уявлення про використання букв для запису законів арифметичних дій, формул, навчитись обчислювати значення простих буквених виразів, складати за умовою задачі і розв’язувати нескладні рівняння першого степеня спочатку на основі залежностей між компонентами арифметичних дій, а згодом з використанням основних властивостей рівнянь. Важливе значення для підготовки учнів до систематичного вивчення алгебри, геометрії та інших предметів мають початкові відомості про метод координат, які дістають учні 5—6 класів: зображення чисел на координатній прямій, прямокутна система координат на площині, виконання відповідних побудов.
Інший матеріал (вимірювання величин, їх середні значення, відношення і пропорції, відсотки) має переважно прикладний характер.
Істотне місце у вивченні курсу займають текстові задачі, основними функціями яких є розвиток логічного мислення учнів та ілюстрація практичного застосування математичних знань. Розв’язування таких задач супроводжує вивчення всіх тем, передбачених програмою.
Зміст геометричного матеріалу включає планіметричні (відрізок, промінь, пряма, кут, трикутник, прямокутник, квадрат, коло, круг) і стереометричні (прямокутний паралелепіпед, куб) фігури та простіші їх властивості, геометричні величини (довжина, градусна міра кута, площа, об’єм) та одиниці їх виміру, побудови геометричних фігур (без посилання на аксіоми конструктивної геометрії).
Вивчення геометричних фігур має передбачати використання наочних ілюстрацій, прикладів із довкілля, життєвого досвіду учнів, виконання побудов і сприяти виробленню вмінь виділяти форму і розміри як основні властивості геометричних фігур. Закріплення понять супроводжується їх класифікацією (кутів, трикутників, взаємного розміщення прямих на площині). Властивості геометричних фігур спочатку обґрунтовуються дослідно-індуктивно, потім застосовуються у конкретних ситуаціях, що сприяє виробленню в учнів дедуктивних міркувань.
Основа інтеграції геометричного матеріалу з арифметичним і алгебраїчним — числові характеристики (довжина, площа, об’єм) геометричних фігур. Узагальнюються знання учнів про одиниці виміру довжини, площі, об’єму і вміння переходити від одних одиниць до інших, оскільки ці знання і вміння використовуються у вивченні предметів природничого циклу і в трудовому навчанні.
Розширюються уявлення учнів про вимірювання геометричних величин на прикладах вимірювання і порівняння відрізків і кутів, побудови відрізків даної довжини і кутів із заданою градусною мірою, оперування формулами периметрів, площ і об’ємів геометричних фігур — знаходження невідомого компонента формули за відомими.
Побудова кута за допомогою транспортира або косинця (прямого кута), прямої та відрізка — за допомогою лінійки використовується у процесі побудови прямокутника за даними його вимірами, а в подальшому при побудові перпендикулярних і паралельних прямих.
Вивчення математики у 5—6 класах здійснюється з переважанням індуктивних міркувань в основному на наочно-інтуїтивному рівні із залученням практичного досвіду учнів і прикладів з довкілля.